在高頻電路中,串音可能是最難理解和預(yù)測的,但是,它可以被控制甚至被消除掉。隨著切換速度的加快,現(xiàn)代數(shù)字系統(tǒng)遇到了一系列難題,例如:信號反射、延遲衰落、串音、和電磁兼容失效等等。當(dāng)集成電路的切換時(shí)間下降到5納秒或4納秒或更低時(shí),PCB本身的固有特性開。
1、串音由何引起?
當(dāng)信號沿著PCB的布線傳播時(shí),其電磁波也沿著布線傳播,從集成電路芯片一端傳到線的另一端。在傳播過程中,由于電磁感應(yīng),電磁波引起了瞬變的電壓和電流。
電磁波包括隨時(shí)間變化的電場和磁場。在PCB中,實(shí)際上,電磁場并不限制在各種布線內(nèi),有相當(dāng)一部分的電磁場能量存在于布線之外。所以,如果附近有其它線路,當(dāng)信號沿一根導(dǎo)線傳播時(shí),其電場和磁場將會影響到其它線路。根據(jù)麥克斯韋爾方程,時(shí)變電及磁場會使鄰近導(dǎo)產(chǎn)生電壓和電流,因此,信號傳播過程中伴隨的電磁場將會使鄰近線路產(chǎn)生信號,這樣,就導(dǎo)致了串音。
在PCB中,引起串音的線路通常稱為“侵入者”。受串音干擾的線路通常稱為“受害者”。在任何“受害者”中的串音信號都可被分為前向串音信號和後向串音信號,這兩種信號部分地由于電容耦合和電感耦合引起。串音信號的數(shù)學(xué)描述是非常復(fù)雜的,但是,如同湖面上的高速快艇,前向和後向串音信號的某些量化特徵還是能被人們所理解。高速快艇對水產(chǎn)生兩種影響。首先,快艇在船頭激起浪花,弧形的漣漪好像隨著快艇一起前進(jìn);其次,當(dāng)快艇行駛一段時(shí)間後,會在身後留下長長的水跡。這很類似于信號通過“侵入者”時(shí),“受害者”的反應(yīng)。“受害者”中有兩種串音信號:位于侵入信號之前的前向信號,像船頭的水和漣漪;落後于侵入信號的後向信號,像船開遠(yuǎn)後仍在湖中的水跡。
2、前向串音的電容特性
前向串音表現(xiàn)為兩種相互關(guān)聯(lián)的特性:容性和感性。“侵入”信號前進(jìn)時(shí),在“受害者”中產(chǎn)生與之同相的電壓信號,這個(gè)信號的速度與“侵入”信號相同,但又始終位于“侵入”信號之前。這意味著串音信號不會提前傳播,而是和“侵入”信號同速并耦合入更多的能量。
由于“侵入”信號的變化引起串音信號,所以前向串音脈沖不是單極性的,而是具有正負(fù)兩個(gè)極性。脈沖持續(xù)時(shí)間等于“侵入”信號的切換時(shí)間。
導(dǎo)線間的耦合電容決定了前向串音脈沖的幅值,而耦合電容是由許多因素決定的,例如PCB的材料,幾何尺寸,線路交叉位置等等。幅值和平行線路間的距離成比例:距離越長,串音脈沖就越大。然而,串音脈沖幅值有一個(gè)上限,因?yàn)?ldquo;侵入”信號漸漸地失去了能量,而“受害者”又反過來耦合回“侵入者”。
前向串音的電感特性
當(dāng)“侵入”信號傳播時(shí),它的時(shí)變磁場同樣會產(chǎn)生串音:具有電感特性的前向串音。但是感性串音和容性串音明顯不同:前向感性串音的極性和前向容性串音的極性相反。這因?yàn)樵谇斑M(jìn)方向,串音的容性部分和感性部分在競爭,在相互抵消。實(shí)際上,當(dāng)前向容性和感性串音相等時(shí),就不存在前向串音。
在許多設(shè)備中,前向串音相當(dāng)小,而後向串音成了主要問題,尤其對于長條形電路板,因?yàn)殡娙蓠詈显鰪?qiáng)了。但是,在沒有仿真的前提下,實(shí)際無法知道感性和容性串音抵消到何種程度。
如果你測到了前向串音,你就可以根據(jù)其極性判別你的走線是容性耦合還是感性耦合。如果串音極性和“侵入”信號相同,容性耦合占主要地位,反之,感性耦合占主要地位。在PCB中,通常是感性耦合更強(qiáng)些。
後向串音發(fā)生的物理理和前向串音相同:“侵入”信號的時(shí)變電場和磁場引起“受害者”中的感性和容性信號。但是這兩者之間也有所不同。
最大的不同是後向串音信號的持續(xù)時(shí)間。因?yàn)榍跋虼艉?ldquo;侵入”信號的傳播方向及速度相同,所以前向串音的持續(xù)時(shí)間和“侵入”信號等長。但是,後向串音和“侵入”信號反方向傳播,它滯後于“侵入”信號,并引起一長串脈沖。
與前向串音不同,後向串音脈沖的幅值與線路長度無關(guān),其脈沖持續(xù)期是“侵入”信號延遲時(shí)間的兩倍。為什麼呢?假設(shè)你從信號出發(fā)點(diǎn)觀察後向串音,當(dāng)“侵入”信號遠(yuǎn)離出發(fā)點(diǎn)時(shí),它仍在產(chǎn)生後向脈沖,直到另一個(gè)延遲信號出現(xiàn)。這樣,後向串音脈沖的整個(gè)持續(xù)時(shí)間就是“侵入”信號延遲時(shí)間的兩倍。
3、後向串音的反射
你可能不關(guān)心驅(qū)動芯片和接收芯片的串音干擾。然而,你為什麼要關(guān)心後向脈沖呢?因?yàn)轵?qū)動芯片一般是低阻輸出,它反射的串音信號多于吸收的串音信號。當(dāng)後向串音信號到達(dá)“受害者”的驅(qū)動芯片時(shí),它會反射到接收芯片。因?yàn)轵?qū)動芯片的輸出電阻一般低于導(dǎo)線本身,常常引起串音信號的反射。
與前向串音信號具有感性和容性兩種特性不同,後向串音信號只有一個(gè)極性,所以後向串音信號就不能自我抵消。後向串音信號及其反射之後的串音信號的極性和“侵入”信號相同,其幅值是兩部分之和。
切記,當(dāng)你在“受害者”的接收端測到後向串音脈沖時(shí),這個(gè)串音信號已經(jīng)經(jīng)過了“受害者”驅(qū)動芯片的反射。你可以觀察到後向串音信號的極性和“侵入”信號相反。
在數(shù)字設(shè)計(jì)時(shí),你常常關(guān)心一些量化指標(biāo),例如:不管串音是如何產(chǎn)生,何時(shí)產(chǎn)生,前向還是後向的,它的最大噪聲容限為150mV。那麼,存在簡單的能夠精確衡量噪聲的方法嗎?簡單的回答是“沒有”,因?yàn)殡姶艌鲂?yīng)太復(fù)雜了,涉及到一系列方程,電路板的拓?fù)浣Y(jié)構(gòu),芯片的模擬特性等等。
4、 串音消除
從實(shí)踐觀點(diǎn)出發(fā),最重要的問題是如何去除串音。當(dāng)串音會影響電路特性時(shí),你該怎麼辦?
你可以采取以下兩種策略。一種方法是改變一個(gè)或多個(gè)影響耦合的幾何參量,例如:線路長度、線路之間的距離、電路板的分層位置。另一種方法是利用終端,將單線改成多路耦合線。合理的設(shè)計(jì),多線終端能夠取消大部分串音。
5、 線路長度
很多設(shè)計(jì)者認(rèn)為縮短線路長度是降低串音的關(guān)鍵。事實(shí)上,幾乎所有電路設(shè)計(jì)軟件都提供了最大并行線路的長度控制功能。不幸的是,僅改變幾何數(shù)值,是很難降低串音的。
因?yàn)榍跋虼羰荞詈祥L度影響,所以當(dāng)你縮短沒有耦合關(guān)系的線路長度時(shí),串音幾乎沒有減少。再者,如果耦合長度超過驅(qū)動芯片下降或上升時(shí)延,耦合長度和前向串音的線性關(guān)系會到達(dá)一個(gè)飽和值,這時(shí),縮短已經(jīng)很長的耦合線路對減少串音影響甚小。
一個(gè)合理的方法是擴(kuò)大耦合線路間的距離。幾乎在所有情況下,分離耦合線路能夠大大降低串音干擾。實(shí)踐證明,後向串音幅值大致和耦合線路間的距離的平方成反比,即:如果你將這個(gè)距離增加一倍,串音降低四分之叁。當(dāng)後向串音占主要地位時(shí),這個(gè)效果更加明顯。
6、隔離難度
要增大耦合線路間的距離并不是很容易的。如果你的布線非常密,你必須花很多精力才能降低布線密度。如果你擔(dān)心串音干擾,你可以增加一或二個(gè)隔離層。如果你必須擴(kuò)大線路或網(wǎng)絡(luò)間的距離,那麼你最好擁有一個(gè)便于操作的軟件。線路寬度和厚度同樣影響串音干擾,但是其影響遠(yuǎn)小于線路的距離因素。所以,一般很少調(diào)整這兩個(gè)參量。
因?yàn)殡娐钒宓慕^緣材料存在介電常數(shù),也會產(chǎn)生線路間的耦合電容,所以降低介電常數(shù)也可減少串音干擾。這個(gè)效果并不很明顯,特別是微帶電路 部分介電質(zhì)已經(jīng)是空氣了。更重要的是,改變介電常數(shù)并不那麼容易,特別是在昂貴的設(shè)備中。一個(gè)變通的辦法是采用較貴的材料,而不是FR-4。
介電質(zhì)厚度,很大長度上影響了串音干擾。一般的,使布線層靠近電源層(Vcc或地),能夠降低串音干擾。改善效果的精確數(shù)值需要通過仿真來確定。
7、分層因素
一些
PCB設(shè)計(jì)者仍然不注意分層方法,這在高速電路設(shè)計(jì)中是個(gè)重大失誤。分層不但影響傳輸線的性能,例如:阻抗、延遲和耦合,而且電路工作易于失常,甚至改變。例如,通過減少5mil的介電質(zhì)厚度來降低串音干擾,這是不可以的,雖然在成本和工藝上都能做到。
另外一個(gè)容易忽略的因素是層的選擇。很多時(shí)候,前向串音是微帶電路中的主要串音干擾。但是,如果設(shè)計(jì)合理,布線層位于兩個(gè)電源層之間,這樣就很好地平衡了容性耦合和感性耦合,具有較低幅值的後向串音便成為主要因素。所以,仿真時(shí)你必須注意,是哪種串音干擾占主要地位。
布線和芯片的位置關(guān)系對串音也有影響。因?yàn)獒嵯虼舻竭_(dá)接收芯片後反射到驅(qū)動芯片,所以驅(qū)動芯片的位置和性能是非常重要的。因?yàn)橥負(fù)浣Y(jié)構(gòu)的復(fù)雜性,反射及其它因素,所以很難解釋串音主要受誰影響。如果有多種拓?fù)浣Y(jié)構(gòu)供選擇,最好通過仿真來確定哪種結(jié)構(gòu)對串音影響最小。
一個(gè)可能減少串音的非幾何因素是驅(qū)動芯片本身的技術(shù)指標(biāo)。一般原則是,選擇切換時(shí)間長的驅(qū)動芯片,以減少串音干擾(解決很多其它由于高速引起的問題也如此)。即使串音不嚴(yán)格地和切換時(shí)間成正比,降低切換時(shí)間仍然會產(chǎn)生重大影響。許多時(shí)候,你對驅(qū)動芯片技術(shù)無法選擇,你只能改變幾何參量來達(dá)到目的。
通過終端降低串音
眾所周知,一根獨(dú)立、無耦合傳輸線的終端連接匹配阻抗,它就不會產(chǎn)生反射?,F(xiàn)在考慮一系列耦合的傳輸線,例如,叁根互相有串音的傳輸線,或一對耦合傳輸線。如果利用電路分析軟件,可以導(dǎo)出一對矩陣,分別表示傳輸線本身和相互間的電容和電感。例如,叁根傳輸線可能有下列的C和L矩陣:
在這些矩陣中,對角線元素是傳輸線自身值,非對角線元素是傳輸線相互間的值。(注意它們是用每單位長度的pF和nH來表示的)??梢杂镁嫉碾姶艌鰷y試儀來確定這些值。
可以看出,每一組傳輸線也有一個(gè)特徵阻抗矩陣。在這個(gè)Z0矩陣中,對角線元素表示傳輸線對地線的阻抗值,非對角線元素是傳輸線耦合值。
對于一組傳輸線,與單根傳輸線類似,如果終端是與Z0匹配的阻抗陣,它的矩陣幾乎是相同的。所需的阻抗不必是Z0中的值,只要組成的阻抗網(wǎng)絡(luò)與Z0匹配就行。阻抗陣中不僅包括傳輸線對地的阻抗,而且包括傳輸線之間的阻抗。
這樣的一個(gè)阻抗陣具有良好的性質(zhì)。首先它可以阻止非耦合線中串音的反射。更重要的是,它可以消除已經(jīng)形成的串音。
8、致命武器
可惜的是,這樣一個(gè)終端是昂貴的,而且是不可能理想實(shí)現(xiàn)的,因?yàn)橐恍﹤鬏斁€之間的耦合阻抗太小了,會導(dǎo)致大電流流入驅(qū)動芯片。傳輸線和地之間的阻抗也不能太大以致于不能驅(qū)動芯片。如果存在這些問題,而你還打算利用這類終端,加幾個(gè)交流耦合電容試試看。
盡管實(shí)現(xiàn)中存在一些困難,阻抗陣列終端仍是對付信號反射和串音的致命武器,特別對于惡劣情況。在其它環(huán)境下,它可能起作用,也可能不起作用,但仍不失為一種值得推薦的方法。
深圳宏力捷推薦服務(wù):PCB設(shè)計(jì)打樣 | PCB抄板打樣 | PCB打樣&批量生產(chǎn) | PCBA代工代料